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The flow of an ideal dissociating gas through a nearly conical nozzle is considered. 
The equations of one-dimensional motion are solved numerically assuming a 
simple rate equation together with a number of different values for the rate 
constant. These calculations suggest that deviations from chemical equilibrium 
will occur in the nozzle if the rate constant lies within a very wide range of values, 
and that, once such a deviation has begun, the gas will very rapidly ‘freeze’. The 
dissociation fraction wil l  then remain almost constant if the flow is expanded 
further, or even if it passes through a constant area section. An approximate 
method of solution, making use of this property of sudden ‘freezing ’ of the flow, 
has been developed and applied to the problem of estimating the deviations from 
equilibrium under a wide range of conditions. If all the assumptions made in this 
paper are accepted, then lack of chemical equilibrium may be expected in the 
working sections of hypersonic wind tunnels and shock tubes. The shape 
of an optimum nozzle is derived in order to minimize this departure from 
equilibrium. 

It is shown that, while the test section conditions are greatly affected by 
‘freezing ’, the flow behind a normal shock wave is only changed slightly. The heat 
transfer rate and drag of a blunt body are estimated to be reduced by only about 
25 yo even if complete freezing occurs. However, the shock wave shape is shown 
to be rather more sensitive to departures from equilibrium. 

1. Introduction 
In  attempting to simulate the conditions of high velocity flight it has become 

necessary to devise wind tunnels with very high stagnation enthalpies. Such 
facilities may vary widely in their mode of operation. Typical examples, in order 
of increasing stagnation temperature, are: tunnels with storage heaters, Smelt 
(1955); tunnels with piston-type compression heaters, Cox & Winter (1957); 
electric arc discharge tunnels, Lukasiewicz (1 958); and shock-tube wind tunnels, 
Hertzberg (1957). All these tunnels have in common the fact that they produce 
a high velocity flow by expanding the gas through a nozzle; this converts the 
thermal energy of random molecular motion into directed kinetic energy of the 
high speed flow. The amount of energy required is very large, so the temperature 
of the unexpanded gas must be high, and this means that the vibrational energy 
modes of the molecules wil l  be excited to high levels so that the gas will be 
partially dissociated and perhaps ionized. 
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The flow through the nozzle is hypersonic, and so the rate of fall of temperature 
following the gas through the nozzle may be very large. As the temperature falls 
a wide variety of internal adjustments must continually be made by means of 
molecular collisions. The energy level of molecular vibrations must be reduced, 
a new balance must be found between atoms and molecules, chemical reactions 
must take place between the different species present and ions must recombine 
to form neutral particles. All these adjustments require a large number of col- 
lisions between molecules before they can reach equilibrium. If the time to reach 
equilibrium is of the same order of magnitude as the time for a typical molecule 
to pass through the nozzle, then departures from equilibrium are to be expected, 
which may modify the flow pattern. 

These so-called relaxation effects can occur whenever the temperature changes 
so fast that the internal structure of the gas cannot keep pace; other examples of 
interest to aerodynamicists are the flow round the ‘shoulder’ of a blunt body in 
hypersonic flight and the flow through a strong shock wave. The latter problem 
has received considerable attention both theoretically (Wood 1956 ; Evans 
1956; Freeman 1958; Duff 1958) and experimentally (Hertzberg 1957; Rose 
1957; Byron 1957). Many attempts have been made to deduce the rate con- 
stants for the various relaxation processes from shock wave experiments, and 
some degree of success has been achieved. However, there is still considerable 
uncertainty about some of the rates of reaction (particularly those for dissocia- 
tion), and also about their variation with temperature. 

Two conditions must be satisfied if the relaxation of a particular degree of 
freedom is to affect the flow through a nozzle: the relaxation time must be com- 
parable in magnitude with the time for the flow to pass through the nozzle, and 
the change in energy associated with the relaxing mode must form a significant 
part of the total change of enthalpy of the gas. Heims (1958) has applied these 
conditions to the flow of oxygen through a nozzle. He concludes that vibrational 
relaxation effects will be small compared with dissociation effects because of the 
energy condition, even though the relaxation times may be comparable at high 
temperatures. Byron (1957) has reached the same conclusion as a result of shock- 
tube experiments. 

Similar arguments suggest that effects of ionization relaxation will also be small 
until the temperature becomes large enough for a significant amount of energy to 
be involved in ionization. It therefore appears that the dissociation and recom- 
bination of oxygen and nitrogen molecules and the formation and dissociation 
of oxides of nitrogen will be the most important relaxation effects to be con- 
sidered. The possibility of interactions between different molecular energy modes 
must, however, be remembered. 

The present work is concerned with only one type of relaxation phenomenon. 
Its object is to  estimate the effects of finite rates of molecular dissociation and 
recombination on the performance of hypersonic wind-tunnel nozzles, and to 
establish a suitable criterion for the conditions under which these rates wil l  be 
important. The ideal dissociating gas of Lighthill (1957) and Freeman (1958), 
which is discussed in detail in the next section, is used throughout. This simplified 
model of the gas behaviour cannot be expected to give accurate quantitative 
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results in the present application, but it does represent the main features of a 
dissociating gas with sufficient simplicity to allow the problem to be formulated. 

It is hoped that the criterion for equilibrium which is deduced here may later 
be applied to more accurate calculations, involving real gas properties. 

The equations for the quasi-one-dimensional frictionless adiabatic flow of an 
ideal dissociating gas have been set up and solved for a number of different values 
of the reaction rate parameter. From these calculations it is deduced that the 
flow through a nozzle will ‘freeze’ under certain conditions, when the rate of 
recombination of atoms to form molecules is too small to maintain equilibrium. 
Calculations have been made only for the wind-tunnel case in which the flow is 
accelerated from rest through a convergent-divergent nozzle. However, the 
problem of the hypersonic shock tube, in which an already supersonic flow is 
expanded through a divergent nozzle, is also discussed, and it is shown that 
relaxation effects will be exactly the same as in the wind-tunnel case if the reaction 
rate parameter is greater than a certain value. 

At temperatures for which dissociation is important, the rate of loss of heat 
from a gas by radiation is believed to be large. However, the energy radiated per 
unit mass of gas is a very strong function of the gas temperature, so that most of 
this radiation will take place in the stagnation region ahead of the nozzle throat, 
where the temperature is highest. Radiation is therefore neglectedin the following 
calculations, it being assumed that the stagnation enthalpy has been reduced by 
an appropriate amount to allow for losses in the stagnation region. 

No allowance is made for viscous effects, although these also are known to be 
verylarge in hypersonic nozzles. However, it seems reasonable to hope that there 
will be an inviscid core of flow in a real nozzle, for which an effective area ratio may 
be defined, and to which the one-dimensional adiabatic flow equations will apply. 
Also, the rate equations near the walls will be greatly modified by the possibility 
of collisions between atoms or molecules and the walls; for this reason recombina- 
tion is likely to be much more rapid near the walls, but these recombined mole- 
cules can only diffuse out from the walls at a finite rate, so they can only affect the 
flow within the boundary layer. The central core of adiabatic flow will be 
unaffected. 

Because hypersonic nozzles employ small expansion angles, and also because 
boundary layer effects are known to be so large, reducing the effective expansion 
angle still further, a quasi-one-dimensional flow theory should be sufficiently 
accurate for the present purpose. The extra complication involved in allowing for 
velocity components normal to the nozzle axis does not appear to be justified at 
this stage. 

Relaxation phenomena in nozzles have been studied by Penner (1955), Logan 
(1957), Heims (1958) and many others. Penner, together with co-workers, has 
derived linearized theories for flows close to dissociation equilibrium and flows 
which are nearly frozen in their initial composition. From these he has derived 
simple criteria to determine the equilibrium state of the exhaust gases from a 
rocket nozzle. Logan (1957) applies a similar method to atomic recombination in 
a’hypersonic wind tunnel. He assumes that departure from equilibrium will occur 
in regions where the rate of change of temperature is large, and uses the results 
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of Penner (1955) which were derived for flow in rocket nozzles. He takes as the 
criterion for the flow to be near equilibrium: 

Tmax G 10-3. 
1 dT 
T dt 
_ _  

Here T is the actual value of the local temperature, d T / d t  is the rate of change of 
temperature with respect to time, and T~~~ is the maximum value of the reaction 
time for the chemical process, that is the time to reach a value (1 - l/e) times the 
equilibrium concentration. On the basis of this criterion, Logan predicts large 
departures from equilibrium in a hypersonic wind-tunnel nozzle where the rate of 
cooling can be very high. The lack of equilibrium is predicted to occur in the early 
part of the nozzle where d T / d t  is large. This so-called ‘frozen’ flow region is 
followed by an adjustment zone where equilibrium is regained by a sudden 
irreversible release of the dissociation energy with a large increase of entropy and 
an even larger decrease in the Mach number. 

The present calculations suggest that, once an appreciable deviation from 
dissociation equilibrium has occurred in a hypersonic nozzle, a return to equi- 
librium is unlikely to take place within the nozzle. This must be compared with 
Logan’s assumption that the region of partially frozen flow is followed by another 
zone in which full equilibrium is achieved. 

These conflicting results may be understood when it is realized that the condi- 
tions in a rocket nozzle, with an area ratio of three or four, are very different from 
those in a hypersonic nozzle, which may have an area ratio of several thousand. 
The fall of density is therefore several orders of magnitude greater in the wind- 
tunnel nozzle than in the rocket case, and this has a large effect on the rate of 
atomic recombination, which requires a three-body collision process and so 
depends on the density squared. It follows that an equilibrium criterion giving 
good results in the rocket nozzle case, where the density change is not large, will 
not be suitable for application to the nozzle of a hypersonic wind tunnel. 

2. The ideal dissociating gas 
The thermodynamic changes in a real gas at high temperatures are extremely 

complicated and not very well understood in detail. I n  order that gas dynamic 
theories may be at all general in application, it is necessary to find simple 
equations which will describe the changes of state of all gases with reasonable 
accuracy within a specified range of temperatures and pressures. The ideal 
dissociating gas of Lighthill (1957) does just this, within the range of conditions 
where dissociation is the dominant effect. 

If a partially dissociated gas, in conditions of thermal equilibrium, be regarded 
as a mixture of two perfect gases, the molecules and the atoms, then the equation 
of state for the mixture may be written 

k 
2m 

p’ = -p’T’(l+a), 

wherep‘ is the pressure,p‘ the density, T’ the temperature, a the ratio by mass of 
atoms dissociated to total of atoms and molecules; k is Boltzmann’s constant and 
m is the mass of an atom. 
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The law of mass action, which determines the equilibrium composition of the 
mixture of atoms and molecules, is (for a perfect gas) 

p& = constant, 

P1z = p&D/2m, 

ui = D/2m, 

- Ge-D/kT '  
1-a pt 

' 

where p i  is a characteristic density which is a complicated function of the tem- 
perature. Lighthill shows that it is a reasonable approximation to take p& = con- 
stant over a wide range of temperatures for both oxygen and nitrogen. This greatly 
simplifies the problem; it is consistent with taking the vibrational degrees of 
freedom of the molecules as always being half-excited, even at low temperatures, 
and leads to the expression 

3k D 
2m 2m 

u'=-T'+-a (3) 

for the internal energy per unit mass, where D is the energy of dissociation. The 
specific enthalpy is then given by 

P' k D  
P 2m 2m 

i' = u'+T = (4+a)T'-+-a. (4) 

It will be seen that, as a approaches zero at  low temperature, the ideal dis- 
sociating gas becomes a perfect gas with constant specific heats and with 
y = cJc, = +. This incorrect low-temperature behaviour sets a lower limit below 
which air cannot be accurately represented by an ideal dissociating gas. An upper 
limit wil l  also be fixed by the fact that electronic contributions to internal energy 
are neglected, as is ionization. 

Lighthill sets these lower and upper limits a t  approximately 3000 and 7000 OK 
for oxygen and nitrogen with densities between and 1 of N.T.P. However, the 
ideal dissociating gas may be expected to show trends correctly over a much wider 
range of conditions, and if necessary corrections can be made a t  high and low 
temperatures. At low temperatures, the rate of change of temperature with area 
ratio in a one-dimensional flow will be too small, because y is too small. Neglecting 
electronic excitation and ionization will make the calculated temperature too high 
for very hot gases, because the electronic contributions to internal energy and 
ionization energy have not been allowed for in full. 

Following Lighthill, we define a characteristic temperature, density, pressure, 
internal energy and velocity for the gas (values of these quantities for oxygen 
and nitrogen are given in table 1): 

1 T i  = D / k ,  
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We now write equations (1)) (2)) (3) and (4) in terms of the dimensionless quantities 
T ,  p, p and u, using T&, p i ,  p& and u> as units: 

P = pT(1 +-a), (6) 

u = 3T +a, (8) 

i = (4+a)T+a. (9) 
These equations completely specify the thermodynamic behaviour of the ideal 
dissociating gas in equilibrium. 

Quantity Units Oxygen Nitrogen 
T; O K  59,000 113,000 
PA glcm3 150 130 

i; kcd./g 3-67 8-02 
v; km/sec 3.9 5.8 

TABLE 1. Characteristic dissociation quantities for oxygen and nitrogen 
(Lighthill 1957) 

Pi atm. 2.3 x 107 4.1 x 107 

Lighthill’s equilibrium theory has been extended by Freeman (1958) to cases 
where equilibrium is not achieved. Freeman writes the net rate of dissociation as 

where rD is the rate of dissociation and rR is the rate of recombination. 
Dissociation takes place when the energy in the internal degrees of freedom of 

a molecule is increased by means of collisions with other particles to a level which 
is sufficient to overcome the binding forces which hold the atoms together. The 
energies of molecular rotation and vibration may contribute towards making 
dissociation possible, as well as the relative translational energies of the molecules. 
Freeman therefore assumes that rD is proportional to the number of binary 
collisions involving sufficient total energy to cause dissociation, so that 

rD = Cl(a, T’) p’( 1 - a) e-DlkY, 

where Cl(a, T’) is an unknown function which is related to the dissociation rate 
constant IcD of chemical kinetics. Freeman concludes that the variation of C, 
with a is unimportant compared with its variation with T’. He takes this variation 
to be a negative power of T’, such that 

where C i s  a rate constant. This temperature variation is appropriate to a system 
in which n classical degrees of freedom of the two partioles combine to make 
dissociation possible, where 

s = in -  1. 

Freeman counts the relative translational energy of both particles but the 
rotational and vibrational energies of only one colliding molecule, on the grounds 
that the vibrational energies are not fully excited and that molecules sometimes 

c; = C ‘ ( T ’ ) - S ,  
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collide with free atoms, and that a collision may not always use all the available 
energy. This gives n = 7 and s = 2-5, which appears to be the maximum likely 
value of this parameter. Byron (1957) shows that n = 6 ( s  = 3 )  gives a better 
agreement with his shock-tube measurements. Values of s between - 0.5 and 
2.5 are considered in this paper, but it is shown that the precise value is not 
critically important in the present application. 

r, = C’p’( 1 - a)  (TI)+ e-DlkT’, Then 

and it follows from the equilibrium condition (equation (2)) that 
1 rR = Cl7 (p’)2 (!!?’)-+a2. 

Pa 
The rate of recombination is proportional to ( P ’ ) ~  because recombination is a 
process which requires a three-body collision. 

Equation (10) now becomes 

This rate equation may not be accurate. Its derivation is based on simple 
collision theory which probably does not give a correct detailed picture of the 
reaction process. For example, Frood (see Winter (1958)) has argued that the net 
dissociation rate must depend on all the particles present, and on all their energy 
states. Thus the existence of a small number of free electrons, or a few molecules 
with very high rotational energy levels, can have a large effect on the overall 
reaction rate. &so, it is believed that the passage of a strong shock wave through 
air may cause initial over-dissociation of the oxygen, followed by recombination 
as the temperature falls further downstream owing to the continued dissociation 
of nitrogen molecules. Unfortunately, a rate equation embodying all these effects 
is not at  present available, so we can only hope that equation (11) may not lead 
us too far astray if the parameters C‘ and s are suitably chosen for a limited range 
of conditions. 

However, it is encouraging to note that the results of the numerical calculations 
which are described in this paper appear to be dominated by the term e-DlkT’ in 
r,  for the upstream part of the nozzle; further downstream where r, has become 
small the results are dominated by the ( P ’ ) ~  in rR. Both of these terms may be 
expected to occur in a more complicated rate equation, and this suggests that 
equation (1 1) may be adequate for our purpose. 

3. Quasi-one-dimensional flow equations 
The frictionless adiabatic flow of an ideal dissociating gas through a duct of 

slowly varying cross-sectional area A‘ is described by the equations of conserva- 
tion of mass, momentum and energy: 

PVA’ = p*w*A*, (12) 
dti 1 dp v-+-- = 0 
dx’ pdx’ ’ (13) 
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together with the thermodynamic relationships of equations (6) and (9) and the 
rate equation (ll), which may be written in the form 

Quantities a t  a sonic throat are denoted by ( )*, and i, is the stagnation enthalpy, 
which is constant for adiabatic flow. The equations are written in terms of the 
dimensionless quantities which were introduced in equations (5). A term TG has 
been introduced into equation (15) for convenience, and C is a reaction rate 
constant with the dimensions of (time)-l. It is related to the recombination rate 
constant k, of chemical kinetics by the approximate equation 

The momentum and continuity equations may be written in terms of a reduced 

sound speed a defined in the usual way as e;:::)' - so that 

T daldx' p 
3 dpldx' 3 a2 = - (4+a)( l+a)- - -  (1 +a - 3T), 

and from equations (12) and (13) 

This shows that a is the velocity at which the stream tube area is a minimum, 
that is, the velocity at a sonic throat as in normal one-dimensional flow theory. 
Note that a depends not only on the variables of state but also on their deri- 
vatives. However, equation (17) may be rewritten 

1 dA '  1 d p  d a  l + a  _ _  A ' d x '  - p $ d x ' (  ::) d x f [ w - ( l + a ) ( 4 + ~ )  

in terms of a reduced velocity c defined by 

c2 = ? ( 4 + a ) ( l + a ) ;  
3 

clearly, c depends only on variables of state and not on their derivatives. Equa- 
tion (18) shows that c is the velocity at which dpldx' cannot be obtained from the 
continuity and momentum equations. This is important for the one-dimensional 
flow calculations which follow, because it means that the critical point, which in 
conventional flow through a convergent-divergent nozzle occurs at the sonic 
throat where v = a, will now occur at another point away from the throat, where 

The velocity c is also important in the theory of characteristics for relaxing 
gases (Boa-Teh Chu 1957; Resler 1957). The equations of two-dimensional 
steady flow in streamline co-ordinates may be reduced to four simultaneous 
partial differential equations in the velocity v, its direction @, the pressure p and 
the dissociation fraction a. Four characteristic directions may be found for this 

v = c. 



Atomic recombination in a hypersonic wind-tunnel nozzle 9 

system of equations. Two of these turn out to be coincident with the streamline 
direction, while the other two are at angles to the streamline direction given by 

so that c rather than a is the velocity component normal to characteristic direc- 
tions. The equations of motion along these two directions become the pair of 
ordinary differential equations 

where a/ac means differentiation along one of the characteristic directions 
defined above, andfis the rate function given in equation (15). The momentum 
and rate of dissociation equations apply as ordinary differential equations along 
the other two characteristic directions (the streamlines). This system of equations 
could be solved by the usual numerical methods. 

Boa-Teh Chu (1957) has explained in detail the difference between the velo- 
cities a and c. He has shown that, for a disturbance propagating in a gas mixture 
close to equilibrium, c is the velocity of propagation of the wave front while a is 
the velocity of the bulk of the disturbance. This result is relevant to $ 7  of the 
present paper, which discusses the effects of lack of equilibrium in a wind-tunnel 
nozzle on various quantities which can be measured in the test section of the 
tunnel. One of the quantities considered is the angle to the flow direction formed 
by a weak wave, which is shown to be very sensitive to the amount of freezing in 
the nozzle, and the question arises as to whether such a wave propagates with 
velocity a or c. It is shown, however, that the numerical difference between these 
quantities is likely to be small under typical conditions. 

Equations (12) to (15) cannot be solved until the nozzle shape is specified, so 
that dctldt in equation (15) may be written in terms of da/dA‘. Many hypersonic 
wind-tunnel nozzles at the present time are axi-symmetric, with a conical 
contraction and expansion joined by a cylindrical throat. This throat shape is not 
suitable for theoretical study as the sharp corners between the conical and 
cylindrical parts lead to discontinuities in the theoretical flow which will in 
practice be smoothed out by boundary layer effects. In  order to obtain a valid 
solution through the throat, a nozzle with the hyperbolic area distribution: 

A’ = A* + K & ( x ’ ) ~  

was chosen for these calculations, where x’ is the axial distance from the throat 
and K N  is a constant. It wiU be seen that, at large distances from the throat, the 
nozzle becomes indistinguishable from a cone with half angle 0 where 

K 6 = tan-1 -N. 
Jn 

We proceed to define an area ratio 
A’ A = -  
A* 
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and a dimensionless axial distance 
KNx‘ c = - p  

so that the nozzle shape becomes 
A = 1 + t’. 

The system of seven equations, (6), (9), (12), (13), (14)’ (15), (21), may then be 
reduced to two simultaneous differential equations in a and i, with g as inde- 
pendent variable. These are 

where 

is a dimensionless dissociation rate parameter which contains the linear dimen- 
sions of the nozzle and its expansion angle as well as the chemical properties of the 
gas. It may be written approximately in the alternative form 

where x; is the dimensional length of the nozzle and A, is its exit area ratio. 
As pointed out above, some uncertainty still exists about the values of the 

dissociation rate constants C and s. Wood (1956) using a simple collision theory 
takes s = - $, whereas Heims (1958) after some discussion of the various theories 
chooses s = 3. Experimental evidence is not conclusive, but the shock-tube 
experiments of Byron (1957) in argon-oxygen mixtures are correlated by 5 = 3. 
It is shown in this paper that the value of s is not important in the type of flow 
considered here, so s = 0 has been used for most of the calculations. The rate 
constants C of Wood (1956) using simple collision theory, and Heims (1958) using 
the theory of Wigner (1939), have been adjusted to s = 0 taking a mean tempera- 
ture of 3000 O K  for oxygen and 5000 OK for nitrogen. With these adjustments 
Wood’s values are 3.8 x 1014 per second for oxygen and 1.8 x 1015 per second for 
nitrogen; Heims’s value for oxygen is 7.5 x lo1’ per second. Shock-tube experi- 
ments by Byron (1957) give C the value of 3.0 x 1016 per second for oxygen, which 
is intermediate between the theoretical estimates of Wood and Heims. Byron 
also found that the rate constant for oxygen dissociation was not greatly affected 
by the presence of nitrogen. Another set of measurements in a shock tube reported 
by Rose (1957) indicate dissociation rate constants for both oxygen and nitrogen 
that are of the same order as Heims’s oxygen value, but essentially independent 
of temperature (s = 0). In  view of all this uncertainty, it is necessary to consider 
several values of both the rate constants in the calculations which follow. 
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Figure 1 shows the values of Q, for oxygen which are obtained from equation (24) 
for various nozzle lengths and area ratios using the rate constants of Wood (1956) 
and Heims (1958) with s = 0. Also marked on this figure are the nozzles of the 
Southampton University hypersonic wind tunnel (Bray, Pennelegion & East 
1958) and the 16in. ‘Hotshot’ tunnel at A.E.D.C., Tullahoma (Lukasiewicz 
1958), which may be taken as typical of very small and large installations, 
respectively. 

0 1  1 10 100 1000 
Length (m) 

FIGURE 1. The dissociation rate parameter for oxygen in conical nozzles. 1, Southampton 

It wiU be seen that the range of interest for Q, lies roughly between 3 x lo8 
(Southampton tunnel, Wood’s rate constant) and 3 x 1012 (16in. ‘Hotshot’ 
tunnel, Heims’s rate constant) for oxygen dissociation, and perhaps somewhat 
larger for nitrogen. We will therefore consider values of Q, within the limits 

but it must be remembered that the experimental data on dissociation rates is not 
yet as reliable as one could wish, and that these limits may have to be modified. 

hypersonic tunnel; 2, 16 in. hotshot; 3, 50 in. hotshot. 

3 x 108 < Q, < 3 x 1015, 
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The differential equations (22 )  and (23 ) ,  which describe the relaxing one- 
dimensional flow of an ideal dissociating gas, cannot in general be solved 
analytically. However, in the limiting case of a gas for which (3 = 0, that is, one 
for which the net rate of dissociation is negligibly small (frozen flow), equation (23)  
shows that the dissociation fraction a remains constant at its value at the entrance 
to the nozzle (ao). Equation (22 )  can then be integrated to give 

where 

The constant is determined from conditions at  a sonic throat, where = 0 by 
definition and 

i" = - 
7+a0  

from equation (22 ) ,  so that (di/dLJ* shall not be zero. It may also be derived from 
equations (14) and (16). 

The other limiting case, in which the reaction rate is so fast that equilibrium is 
reached everywhere in the flow, is given by letting @ approach infinity in 
equation (23 ) .  Then, either 

The latter is the law of mass action (equation (7)) for equilibrium. Together with 
the condition that the flow is isentropic, it yields the equation 

(26) 
l+a  a 

3 1 n T + -  + a + 2 l n -  =constant. 

Hence, from the flow equations (12) ,  (13) and (14), an expression for da/dE may 
be deduced 

T 1-a 

(27 )  
$+) E -4% T )  

1 + 6' B(a) T3 + C(a) T' + D(a) T - E(a) ' 
where A (a, T )  = 4 a T (  1 + a - 3 T )  (1 - a)  (io - i), 

B(a) = (7 +a) ( 4  +a) (2 -a) - 3 a ( l  -a), 
C(a) = 2 4  1 -a) (1 +a) - 6 ( 2 - ~ )  (io - a), 
D(a) = 3 ~ ~ ( 1 - - ) ( 3 + a ) ,  
E(a) = 2 4  1 - a )  (io - a), 

and i = ( 4 + a ) T + a .  

Equation (27) shows that da/dC; + 0 as 6 + 0 unless 
B(a*) T*3+C(a*) T*'+D(a*) T*-E(a*) = 0, (28)  

and this therefore yields a relation between a* and T* at a sonic throat. A simul- 
taneous solution of this and equation (26) gives a* and T * .  The mass flow rate 
p*v* follows from equations (7), (9) and (14). Finally, for every equilibrium 
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condition satisfying equation (26) a value of [ can be found from the continuity 
equation ( 12) 

end the equilibrium flow can be solved. 
Conditions a long way upstream of the throat ([ -+ -a) can be studied by 

expanding a, T, p, p ,  i and v as power series in A-* and substituting in equa- 
tions (6), (9), (12), (13), (14), (15) and (21). From this it can be shown that the 
flow in this region is independent of @ to the order A-2, so long as Q, is not identi- 
cally zero. In  other words, the solution to equations (22) and (23) for this region 
is the equilibrium solution, independent of @. This is also to be expected physi- 
cally, of course, since the velocity is small far upstream of the throat. 

pv( 1 + [2) = p*v* 

4. Exact solutions 
Solutions of the differential equations (22) and (23) have been found numeri- 

cally by a step-by-step procedure for one set of stagnation conditions and a 
number of different values of the rate parameters 0 and s. The stagnation 
conditions considered were To = 0.1 and po  = 5 x equivalent dimensional 
values of these and the other stagnation quantities for oxygen and nitrogen are 
given in table 2. 

Quantity Units Oxygen Nitrogen 
"K 5,900 11,300 

P; g/cm3 4.44 x 10-3 3.84 x 10-3 
PA atm. 115 205 
i; kcal/g 4.25 9.29 
U - 0.6899 0.6899 

TABLE 2. Stagnation conditions for oxygen and nitrogen 

It will be remembered from the previous section that @ probably lies within 

3 x 10s G CD G 3 x 1013. the range 

The method of solution for the smaller values of @ was to start integration 
upstream of the throat, and to seek by trial and error for a mass flow rate p*v* 
which satisfied the condition v = c at the critical point just downstream of the 
throat. The solution could then be continued downstream of the critical point 
using this value of p*v*. This trial and error procedure turned out not to be 
necessary with the larger values of @ for which the flow was still essentially in 
equilibrium at the critical point. The step-by-step integration was therefore 
started from equilibrium in these cases, at  a point just downstream of the critical 
point, using the equilibrium value of p*v*. It was found that the exact initial 
point for these integrations did not materially affect the solution further down- 
stream. However, the interval size had to be very small in order to prevent the 
step-by-step integration from diverging, and so the computing times were long, 
especially for the larger values of @. To reduce this time to a minimum a com- 
putational programme was devised which periodically chose the largest possible 
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interval satisfying the condition that the integration error had to be less than 
a specified amount. 

Some of the results of these calculations are shown in figures 2 to 7. The dissocia- 
tion fraction 01 is plotted against the nozzle area ratio A in figure 2 for the limiting 
cases of frozen flow (0 = 0) and equilibrium flow (@ = a), and for three typical 

j Frozen 

0.3 ____ 

0.2 - 

0.1 ' 

1 
0 

t 100 1000 10,000 
A 

FIGURE 2. The dissociation fraction. Stagnation conditions: To = 0.1, po = 5 X 
s = o . -  , Exact solutions; - - - -, approximate solutions. 

looyooor 

A 

' I  I 

FIUURE 3. The reduced density. Stagnation conditions: To = 0.1, po = 5 X 8 = 0. 
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intermediate cases: CD = 3 x lo8 (Southampton University tunnel, Wood’s rate 
constant for oxygen); CP = 3 x 1010; and CP = 3 x lof2 (16in. ‘Hotshot’ tunnel, 
Heims’s rate constant for oxygen). The parameters is taken to be zero throughout. 
The intermediate solutions are initially indistinguishable from the equilibrium 
case in the upstream part of the nozzle, as predicted in the previous section; but, 
once a significant departure from equilibrium has begun, a very soon approaches 

V T 

1000 10.000 

:K,Tl 
O1 10 100 1000 10,000 

A 

FIUURE 4. The reduced velocity. Stagnation 
Conditions: To = 0.1, p ,  = 5~ s = 0. 

, Exact solutions ; - - - , approxi- 
mate solution. 

A 

FIGUFZE 6. The ratio of characteristic speed to 
sound speed. Stagnation conditions: To = 0.1, 
p,  = 5~ 10-6,~ = 0. 

A 

FIGURE 5. The reduced temperature. Stagnation 
conditions: To = 0.1, p ,  s 5 x B = 0. 

, Exact solutions; --- , approxi- 
mate solutions. 

FIGURE 7. The Mach number. Stagnation 
conditions: To = 0.1, po = 5 x low6, 8 = 0. 
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a constant value and does not change further, no matter how large A may become. 
This behaviour is also to be expected from the form of the rate equation (15), 
which in the downstream part of the nozzle is dominated by the recombination 
term, so that 

The density is becoming very small in this region (see figure 3), and so da/d[ 
must become small also; in fact, the velocity is almost constant at its limiting 
value so that daldg approaches zero roughly as A-2. Once the flow has become 
frozen in this manner, equation (15) suggests that there is no chance of it un- 
freezing again further down the nozzle unless s is very large. Note that this 
behaviour is a direct result of the three-body collision process which is required 
for recombination; if recombination takes place in this way, then the p2 term will 
always occur, whatever the details of the recombination equation. Presumably 
dald5  will always become small if the density is sufficiently low. 

Figures 3, 4 and 5 show respectively the dimensionless density, velocity and 
temperature plotted against the area ratio for the cases Q, = 0, 3 x 1O1O and 
infinity, with s = 0. As before, the intermediate solution starts off from equi- 
librium and then quite suddenly diverges towards the frozen solution. The 
solutions for other values of Q, are not shown on these graphs as they behave in an 
exactly similar manner; the case with Q, = 106 is hardly distinguishable from 
frozen flow. The ratio of the characteristic speed c of equation (19) to the sound 
speed a (equation (16)) has been calculated for the same cases, and is shown in 
figure 6; for equilibrium flow this ratio remains nearly constant, while for frozen 
flow it is always unity. The intermediate case drops sharply from the equilibrium 
curve as freezing occurs. Figure 6 shows that the maximum error in using c instead 
of a is always less than 13 %, and will be almost zero in the test section after 
freezing has occurred. Because this error is small, c rather than a has been used to 
define a Mach number M, = v/c, and this is shown in figure 7. Freezing causes a 
large increase in Mach number, because of the fall in temperature. 

Integrations have also been carried out with various non-zero values of the 
parameter s, and figure 8 shows the variation of a with A when s takes the 
extreme value of 2-5, with the same stagnation conditions as were considered 
previously. It wi l l  be seen that the gas behaviour is qualitatively the same as for 
s = 0, with freezing taking place at the downstream end of the nozzle. However, 
the limiting value of a is somewhat smaller, and the approach to it is more 
gradual, as would be expected from the form of the rate equation. The effect of s 
upon the dissociation fraction is seen to be comparatively small. 

Another feature of the calculations is that the flow at the nozzle throat ([ = 0) 
is very nearly in equilibrium for all the cases considered, except for Q, = 0 and lo6. 
This means that the mass flow rate p*v* is independent of Q, if 0 is sufficiently 
large. Actually, p*v* does not vary greatly, even as @ -+ 0, the limiting values 
being : 

@ = 0, 

<p = 00, 

p*v* = 0.868 x 

p*v* = 0.797 x 
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Penner (1955) has considered the one-dimensional flow of reacting gas mixtures 
for application to propellant systems such as rocket engine nozzles. His funda- 
mental equations are similar to equations (12) to (15), but he goes on to develop 
two linearized treatments for near-equilibrium and near-frozen flows. In  the first 
of these he assumes that the temperature T in the relaxing flow is so close to the 
corresponding equilibrium temperature T,  that an effective equilibrium constant 
may be defined for the relaxing flow as the first two terms of a Taylor series expan- 
sion about T,. This requires that q-T 

T,  
< 1. 

A 
FIQURE 8. Effect of taking s = 2.5 on the dissociation fraction. Stagnation conditions: 

To = 0.1, po  = 5~ 10-6, s = 2.5. 

Assuming that the approximation will become invalid if this fraction is greater 
we find that CD must be than 0.5, then if A = 1000, To = 0.1 and po = 5 x 

greater than 2 x 1013. Similarly, Penner gives a near-frozen solution, for which 

where T, is the temperature for a given A with 0 = 0. Assuming again that this 
fraction must be less than 0.5, we find, for the case quoted above, that (D must be 
less than 3 x 107. It appears, therefore, that there may be a wide range of values 

in which these approximate solutions can given appreciable errors. 

of the rate parameter 3 x  107 < a < 2 x  1013 

2 Fluid Mech. 6 
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For the rocket nozzle case it is permissible to neglect density changes in the 
nozzle when evaluating criteria for near-equilibrium and near-frozen flow (Penner 
1955), but this approximation is grossly in error in the case of a hypersonic wind 
tunnel, as figure 3 shows. 

5. Approximate solutions 
The solutions of equations (22) and (23) which have been described in the last 

section all have the property that they are indistinguishable from the equilibrium 
solution (equations (26) and (27)) at points sufficiently far upstream. Figure 2 
shows that the larger the value of CD the further downstream will the deviations 
from equilibrium occur, but that once such a deviation begins a very soon reaches 
a constant value a,, say. In  other words the flow becomes frozen, and the rate 
equation is approximately daldt = 0. 

Three flow regions may therefore be distinguished: 
(1) A region of flow near to equilibrium, in which both the rate of dissociation 

rD and the rate of recombination rR are very large in comparison with the net 
dissociation rate daldt = - rR, so that the equilibrium condition r D  = r, is 
closely satisfied. Equilibrium will then continue so long as this situation is 
maintained, that is so long as 

(2) A transition region, in which p and T have fallen sufficiently so that rD and 
rR are of the same order as daldt, and there is consequently an appreciable 
departure from equilibrium. This results in an increase in the rate of fall of 
temperature, which reduces r, because of the exponential term andso increases the 
deviation from equilibrium. Once this process has begun, freezing takes place 
quite rapidly. 

(3) A region of almost frozen flow, in which the exponential decrease of r D  has 
gone so far that this term is negligible, i.e. 

da 
_-N and consequently dt - 'R' 

But rR is proportional to a2p2, ifs is small, and so approaches zero faster than A-2. 
The overall change of a in this region is small. 

The two inequalities of equations (29) and (30) are the conditions for the gas 
to be near equilibrium and nearly frozen respectively, Freezing will take place 
suddenly if they are satisfied at adjacent points in the flow, and this will happen 
if rD is decreasing much more rapidly than rR as 6 increases. From the definitions 
of TD and rR, this means that (1 -a)  e--1/T must approach zero faster than a2p, 
which is simply the condition that the gas shall not follow the law of mass 
action (equation (7)). Freezing reduces T and increases p, and the sudden 
nature of the change appears to be due to the exponential form in which T occurs 
in rD.  
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If the transition from equilibrium to frozen flow does take place within a small 
region of the nozzle, then it should be possible to construct an approximate 
solution of the flow problem, in which freezing is assumed to occur instantaneously 
at a particular point. The following is a simple attempt to define this point of 
sudden freezing. 

Since ( - da/dt) is much smaller than rD for equilibrium, and much larger than 
r,  when the flow has frozen, somewhere in the freezing region the two quantities 
must be of the same order of magnitude. Very approximately, 

at the freezing point, where Kis  an undetermined constant, which we may expect 
to be of order unity. Now up to this point the gas is assumed to be in complete 
equilibrium, so that daldt and rD may be found from the equilibrium solution 
(equations (26) and (27)), and the equation for the freezing point becomes 

where the suffix e denotes equilibrium. Equation (31) has been used to fhd the 
freezing point for the cases which were solved by step-by-step integration in the 
previous section, and approximate solutions for the region downstream of the 
freezing point have been computed by setting @ = 0, so that equation (25) applies. 
The results of some of these calculations are compared with the more accurate 
integrations in figures 2, 4 and 5, from which it appears that the approximation 
gives reasonable results in these cases. The constant K has been taken equal 
to unity; actually, better agreement with the more accurate calculations is 
obtained if K is 1.6, but the method probably does not warrant such accuracy 
since K may actually vary. The results do not depend critically on the value 
chosen. 

Equation (31) also gives the limiting value of the dissociation fraction, a,, as A 
goes to infinity, and this is shown in figures 9 and 10, plotted against the rate 
parameter @ for a wide range of stagnation conditions with s = 0. Figure 9 also 
gives the values of a, determined from the numerical integrations of the previous 
section and the results of two further numericalintegrations at To = 0.08 and 0.12 
to check the predicted temperature variation of a,. Once again, agreement with 
the approximate results is quite good. The variation of am with s is shown in 
figure 11 ; here the agreement between the approximate theory and the numerical 
integrations is not so good, suggesting that larger values of K are required for 6 

greater than zero. The overall variation of a, with s is shown to be small, but this 
does have a noticeable effect on the value of @ required to maintain equilibrium, 
which may be decreased by a factor of about ten if s is changed from zero 
to 2.5. 

It appears from figure 9 that if s = 0 the flow will be approximately frozen 
everywhere if 0 is less than 106, and that it will be near to equilibrium every- 
where if @ is greater than a value Qe, which varies from the region of 1014 with 
To = 0.07 to  more than lo1* with To = 0.15. Anywhere within these very wide 

2-2 
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~og10 Q, log10 @ 

FIGURE 9. Limiting value of the dissociation 
fraction--effect oftemperature. po = 5 x 10-6, 
8 = 0. , Approximate solutions ; approximate solution. 
@ @ 0 @ , exact solutions. 

FIUURE 10. Limiting value of the dissociation 
fraction-effect of pressure. To = 0.1, 8 = 0, 

s 

FIamtlr. 11. Limiting value of the dissociation fraction-effect of 8. stagnation conditions: 
To = 0.1, Po = 5 x 10-6. , Approximate solutions; @ @ 0, exact solutions. 
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limits the gas will be partly frozen and partly in equilibrium. It follows that 
nozzle scale effects must be small, since CD is directly proportional to the linear 
dimensions of the nozzle, and increasing the nozzle size by a factor of ten cannot 
reduce a, by more than about 0.1 at the most, while the reduction may be very 
much less. Also, we do not need to determine Q, very accurately in order to 
estimate how much freezing will take place in a particular nozzle; this is fortunate 
in view of the present uncertainty about dissociation and recombination rates. 

1 
~og,Ll A 

FIQILRE 12. The rate parameter and area ratio for sudden freezing. 1, Southampton 
hypemonic tunnel; 2,16 in. hotshot; 3,50 in. hotshot. Approximatesolutions :po = 5 x 
8 = 0. 

Figure 12 shows the area ratio at which the sudden freezing of this approximate 
theory will occur as a function of cD for various temperatures. Also indicated are 
values of 0 using the rate constants of Woods (1956) and Heims (1958) for typical 
large and small nozzles. The intersections between the two sets of curves show the 
area ratios to which equilibrium may be maintained under various conditions. 

The effect of stagnation pressure on the freezing process is shown in figure 10. 
Decreasing the stagnation pressure increases the value of CD necessary for equi- 
librium; this will be important in low density high Mach number wind tunnels. 

The above calculations have been concerned with the flow of a dissociating gas 
through a wind-tunnel-type nozzle, in which gas initially at rest is accelerated to 
hypersonic speed through a convergent-divergent nozzle with a sonic throat. 
However, there is interest also in the case of the hypersonic shock tube. Here the 
air is accelerated to a low supersonic speed by the passage of a strong normal 
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shock wave; it probably has time to reach thermodynamic equilihriumheforeit 
enters the divergent nozzle, and is accelerated to hypersonic speed. Under 
certain circumstances then, the shock-tube flow will be nearer to equilibrium 
than the corresponding wind-tunnel flow. However, from the calculations above 
it appears that if @ is sufficiently large the wind-tunnel flow wiU also be in 
equilibrium at the point corresponding to  the inlet of the shock-tube nozzle, and 
the two flows will then be identical downstream. This wiU occur if @ is greater 
than lolo, approximately, for the cases considered here with s = 0. 

It is possible that an equation similar to equation (31) may be useful to deter- 
mine the conditions under which the flow of a real dissociating gas through a 
nozzle will freeze. 

6. Effects of nozzle shape: the optimum nozzle 
Any conical nozzle is included in the above analysis, and the expansion angle 

does not appear explicitly in the results, as it is contained in the dimensionless rate 
parameter @. However, a wind tunnel working section is usually a duct of con- 
stant cross-sectional area, and this case needs special consideration. 

We have shown in previous sections that, if 0 lies within a certain wide range 
of values, the dissociation fraction a will approach a constant value a, in the 
expanding part of the nozzle, and that therecombination rate, - da /d t ,  will become 
small. In  this section we shall try to determine whether it is possible for - da/d t  to 
become larger again in a region of parallel flow, and hence whether a can deviate 
from a, in such a region. We shall also consider the problem of finding an optimum 
nozzle shape to avoid freezing as far as possible. 

It is assumed that the transition to parallel flow takes place smoothly and in 
a short distance, so that the flow conditions at the beginning of the constant 
area region are the same as those at the end of the expansion. The rate equation (15) 
then shows that -da/dt  will be the same at both ends of this transition region. 
We wish to discover how rapidly -da/d t  can vary downstream of this point, and 
an upper limit to this variation is given by neglecting 6he rate of dissociation 
entirely, so that equation (15) becomes 

Now p is proportional to llv, since the area is constant, so if s = 0, 
da 2 

at 
-- N (;) 

The temperature is low in the working section, so equations (9) and (14) give 
v2 21 2(i0 - a) 

- and 

This shows that - da /d t  gets smaller as a gets smaller; in fact, at the entrance to 
the constant area portion of the nozzle, -da/d t  is already small, and it must 
become still smaller downstream, so there appears to be no likelihood of an 
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appreciable change in ct taking place within this region if s = 0. Putting s = 4 
multiplies all values of da/dt  in the above argument by a factor of about 5 for the 
cases considered in 94, but this is not nearly enough to affect the numerical value 
of a significantly. 

It appears, then, that freezing will eventually take place in a nozzle of the type 
considered, and that a constant area working section will not unfreeze the gas 
appreciably. However, it is still possible that there is a different nozzle shape 
which will give better results. 

The maintenance of equilibrium in a nozzle depends not only on the rate con- 
stant of the gas passing through it, but also on the size and shape of the nozzle 
itself. These factors have been combined in the dimensionless rate parameter a, 
which determines whether the flow remains in equilibrium or how soon it freezes. 
For conical nozzles CD may be written in the form 

where B is a reduced reaction rate constant, C J(B&--), and Z is the ratio 

x'/JA*, where x' is the distance along the nozzle axis. 
The area ratio at which sudden freezing will occur has been calculated from 

equation (31) as a function of Q, for different stagnation conditions. The results 
are shown in figure 12. They enable us to estimate the minimum value of CD 
required to expand a given flow through a given area ratio in a conical nozzle and 
maintain equilibrium. If the gas properties are known, equation (32 )  then gives 
the maximum allowable expansion angle for the nozzle. In  practice this angle 
usually turns out to  be very small, giving a conical nozzle wlzich is much too long, 
and a test section flow which is Wed by the wall boundary layer. 

We therefore wish to find the shape of a nozzle which will expand the flow from 
a given throat area to a given test section area in the shortest possible length, 
consistent with the maintenance of thermal equilibrium, in order to cut down 
boundary layer growth. This will be called an optimum nozzle in the following 
paragraphs. 

The optimum nozzle has a shape which keeps the flow continually on the verge 
of freezing, but never expands it quite fast enough for freezing to occur. Such a 
shape will clearly start with a large expansion angle near the throat where the 
temperature and density are high so that the rate of recombination may be large, 
but the expansion angle will get progressively less further down the nozzle. 

A very approximate expression for this shape may be found by regarding the 
optimum nozzle as being made up of a large number of conical sections, in each 
of which the expansion angle is chosen so that CD is large enough to  ensure 
equilibrium. Then, from equation (32), the optimum shape is given by 

where @(A)  is the rate parameter required to maintain equilibrium, which may be 
obtained from figure 12. The equation of the corresponding conical nozzle, having 
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the same value of @ at its exit area A,, and therefore giving the same test section 
conditions providing both nozzles do in fact maintain equilibrium, is 

2 
B 2 = - @(At)  A*. 

Now the data of figure 12 is fitted quite well by an equation of the form 

@ = @A", (34) 
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FIGURE 13. Ratio of length of conical nozzle to length of qvggqonding opthm 

nozzle. po = 5 x  10-6,a = 0. 

where the constants@ and n depend on the stagnation conditions. To this approxi- 
mation the optimum nozzle shape, equation (33), becomes 

and the ratio between the overall lengths of the conical and optimum nozzles is 

This ratio is plotted in figure 13, against stagnation temperature, for the case 
s = 0. It will be seen that the optimum nozzle is between one-fifth and one-tenth 
of the length of the corresponding conical nozzle, which should lead to a worth- 
while saving in boundary layer growth. 
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An analysis of this kind is obviously not mathematically rigorous and so needs 
checking. In  order to carry out such a check a few step-by-step integrations have 
been made for nozzles of the shape given by equation (35), with the parameters 0 
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E”1amtp: 14. Dissociation fraction for optimumnozzles. Stagnation conditions :po = 5 x lo-‘, 
8 = 0. , Equilibrium; -. - - -, optimum nozzle. 

and n taking the values indicated from figures 12 and 13. The dissociation 
fraction a obtained from these calculations for three different stagnation tem- 
peratures is compared with the corresponding equilibrium solutions in figure 14. 
It will be seen that a flow very close to equilibrium is achieved in each case. 
A numerical example of the size and shape of the optimum nozzle is given below 
for a typical case. 
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fluid is oxygen and the stagnation conditions are To = 0.1 and p, = 5 x 
(corresponding to 5900" K and 115 atmospheres). 

Figures 9 and 12 suggest that to ensure complete equilibrium in the test section 
of this tunnel the @-value for its conical nozzle would have to be about 1015, if 
s = 0. Figure 1 then shows that the nozzle would need to be 630m long, if the 
rate constant of Heims (1958) is used; the corresponding optimum nozzle would 
be 126m long. If s takes the extreme value of 2.5 the required @ is reduced to 
about 1014, so the lengths of the conical and optimum nozzles are 63 and 12.6 m, 
respectively. An optimum nozzle for this case, with a test section area of two 
square metres, is drawn to scale in figure 15. Its shape requires some modification 
near the throat, which adds slightly to the length. 

We consider a hypersonic wind tunnel with an area ratio of 1000. The working 

Scale of metres 
0 1 2 3 4 5  

"*,..:..f--- - _ _  - - _ - -  - - - -  ... .. .. 
-4 

Optimum nozzle for oxygen 

FIGURE 15. Shape of optimum nozzle. Stagnation conditions: To = 0-1, 
s = 2.5. po = 5 x  

Nozzles of this type might not be practical for aerodynamic reasons even if they 
were smaller. However, the calculations above do suggest that a modest decrease 
in dissociation fraction for a given nozzle length may be achieved by suitable 
contouring. The initial rate of expansion downstream of the throat must be as 
large as other considerations will allow, and then the rate of expansion must be 
progressively reduced further downstream. 

7. Effects of lack of equilibrium in the test section 
The calculations presented above suggest that the flow in the test section of 

a hypersonic wind tunnel may deviate considerably from thermal equilibrium for 
a wide range of stagnation conditions. We must therefore consider what effects 
these non-equilibrium phenomena will have on quantities measured in the tunnel 
test section. 

Figure 16 shows the conditions that will be encountered at an expansion ratio 
of 1000 with s = 0, To = 0-1 andp, = 5 x as calculated in $4, plotted against 
the rate parameter @. It will be seen that the velocity is slightly reduced by 
freezing and the density is correspondingly increased; however, the temperature 
is reduced by a factor of about 40 and the static pressure by about 17. These large 
changes may be expected to have a considerable effect on the flow past bodies in 
the tunnel. Most bodies at present being tested are more or less blunt-nosed and 
will therefore have nearly normal shock waves in front of them, so it is of interest 
to see what effect freezing in the flow upstream of a normal shock will have on the 
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flow behind it. If conditions ahead of the shock are denoted by a suffix (1 )  and 
those behind by (2), then the equations of motion are: 

P l V l  = P 2 V 2 ,  

Pl+Plv; = P z + P 2 &  

i, + = i2 + 4.;. 
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FIGURE 16. Test section conditions. A,, = 1000, To = 0.1, po = 5 x s = 0. 

The conditions ahead of the shock are known from the nozzle calculations of 
5 4 as functions of E or A,  so the shock wave equations can be solved at  a given c. 
It is assumed for the present that equilibrium is reached quickly behind the shock, 
so that a; 1 

1 - - a 2  P 2  

- = - e-1lTz 

from the law of mass action (equation (7)). This is a reasonable assumption, as the 
high temperature and pressure behind the shock will favour rapid equilibrium; 
however, relaxation effects behind the shock are discussed later in this section. 
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Using the thermodynamic relationships of 5 2 and neglectingp,, which must be 
very much smaller thanp,vt if the flow is hypersonic, equations (37), (38) and (39) 
may be written: D*V* 

1.4 

1.2 

1 .o 

08 

0 c  

0 4  

0 2  

0 

i, = i, + +v$. 

FIQURE 17. Conditions behind a normal shock wave. A, = 1000, To = 0.1, 
$30 = 5 x 10-6,s = 0. 

The left-hand sides of equations (40) and (42) are independent of nozzle 
relaxation effects, since we have shown that the mass flowp*v* does not vary much 
with @. The left-hand side of equation (41) does contain i,, which depends on @, 
but the numerical variation of the whole term is not large. Also, from equa- 
tion (42), the enthalpy behind the shock, i2, cannot differ greatly from the 
stagnation enthalpy, io, since the velocity behind a strong shock wave is small, 
so that i, must be almost independent of @. It follows that the equilibrium 
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conditions behind a normal shock wave cannot be greatly affected by relaxation 
in the nozzle upstream of the shock. 

Solutions of equations (37), (38) and (39) have been found by Lighthill’s 
iteration method (Lighthill 1957) for the case with s = 0, To = 0.1, p o  = 5 x 
and A ,  = 1000, by using the results of $4, and the results of these calculations are 
shown in figure 17. It will be seen that az and T, are almost independent of the 
degree of freezing in the nozzle, but that freezing reduces the density behind the 
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FIGURE 18. Mach angle and stand-off distance for a sphere. A, = 1000, To = 0.1, 
p ,  = 5 x 10-6, s = 0. 

shock to about 75 % of its equilibrium value. The Pitot pressure, po2, is also shown 
in figure 17, and it also is reduced somewhat by freezing. To the accuracy of the 
Newtonian approximation, the drag of a given body is proportional to the Pitot 
pressure, so thepoz curve shows that drag forces will be underestimated in a frozen 
flow. An estimate of the effect of non-equilibrium in the nozzle on the heat transfer 
rate at the stagnation point of a blunt body can also be made. Fay & Riddell 
(1958) have solved the heat transfer problem for a wide range of conditions; here 
their solution for equilibrium within the boundary layer has been used together 
with the assumption of constant wall conditions, and figure 17 shows the calcu- 
latedratio of heat transfer rate (qz) to heat transfer rate with = 0 (qf2). Freezing 
in the nozzle is seen to cause a reduction in the measured heat transfer rate. 
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Further, the simple blunt body theory described by Lighthill (1957), in which 
the flow between the shock wave and the nose of the body is assumed to be 
incompressible, can be applied to determine the stand-off distance of a shock wave 
in front of a spherical nose (see figure 18). The stand-off distance depends on the 
shock wave density ratio; pa is reduced by freezing while p1 is increased, and the 
resulting change in p2/p1 is sufficient to increase the stand-off distance by a factor 
of two as the flow freezes. 

Equilibrium Frozen 
FIGURE 19. Shock wave shapes for equilibrium and frozen flow (not t o  scale). 

According to approximations of the Newtonian type the shock wave in front 
of a blunt body closely follows the body shape near the front stagnation point, 
further round the body the shock separates from the surface, and after this its 
strength gradually weakens and its inclination gradually approaches that of a 
Mach wave. It is therefore of interest to calculate the Mach angle 

and this has been done from the calculations of $4. The results are shown in 
figure 18, from which it will be seen that the Mach angle is reduced by a factor of 
about three if freezing occurs, mainly because of the large fall in static tempera- 
ture. This result, together with the increase in stand-off distance, suggests that 
a measurable change in shock wave shape may be expected as a result of nozzle 
freezing. This effect is illustrated in the sketches of figure 19, which are not to 
scale. 

The above analysis of flow past a blunt body neglects any lack of equilibrium 
in the flow between the shock wave and the spherical nose, but Freeman (1958) 
has provided the necessary extension to non-equilibrium flows. He shows that 
for a given set of equilibrium conditions upstream of the shock, the stand-off 
distance depends on a dimensionless rate parameter 
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in our notation, where r is the radius of the sphere. The ratio of our rate parameter 
@ to Freeman’s A is 

Now for a typical model in a typical hypersonic wind tunnel, this ratio is of the 
order of l/pl (if s = 0) ,  that is, about 108. But Freeman shows that most of the 
relaxation effects behind the shock wave occur, for a typical example, in the 
range 0 G A G loo, 
or approximately in the range 0 < a, 6 1010. 

The nozzle flow will still be nearly frozen with @ in this range, so that as the 
gas passes through the shock a only has to make the small change from a. to a,; 
this should reduce the effects of relaxation behind the shock. If @ > lolo, so that 
the nozzle flow is approaching equilibrium, then A > lo2 and relaxation behind 
the shock is again negligible in its effect on the stand-off &stanch. It therefore 
seems reasonable to  assume, as we did earlier in this section, that the stand-off 
distance, as measured in a hypersonic wind tunnel, depends only on relaxation 
effects in the wind-tunnel nozzle itself. However, Freeman’s analysis could, if 
necessary, be modified to allow for a non-zero value of al. 

8. Conclusions 
If the assumptions which have been made in this paper are accurate, then the 

flow of a partly dissociated gas through a hypersonic shock tube or wind-tunnel 
nozzle will remain in chemical equilibrium until a certain point in the nozzle is 
reached. Downstream of this point the gas will ‘freeze’ quite rapidly, so that its 
composition will remain almost constant if the flow is expanded further or passed 
through a constant area test section. It is suggested that this behaviour is a 
consequence of the triple-body collision process through which recombination 
occurs, and that freezing can be avoided only if the reaction rate parameter 0 is 
greater than a value Qe. This is about 1015 for the typical case considered in 0 4, if 
the area ratio of the nozzle is 1000 and s = 0. Increasing the stagnation tempera- 
ture or decreasing the stagnation pressure increases Be, but a positive value of 
s decreases it. If s is increased from zero to 2.5, is reduced by a factor of 
about ten. 

The values of @ achieved for the flow of oxygen or nitrogen in large and small 
nozzles with various values assumed for the rate constant lie within the range 

3 x 10s G a, G 3 x 1013, 

so it is concluded that freezing will occur under conditions of practical interest. 
The shape of an optimum nozzle has been derived in order to expand the gas in 

equilibrium in the shortest possible length. This is shown to be about one-fifth of 
the length of the corresponding conical nozzle, but it is still too long for practical 
applications. 

The flow near the nose of a blunt body in the tunnel test section is shown to be 
affected only slightly by freezing in the nozzle, but the shock wave shape may be 
altered significantly. 
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